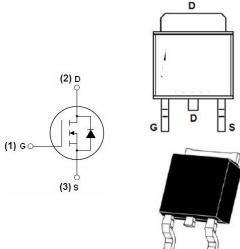

MSKSEMI

ESD

TVS

TSS


MOV

GDT

PLED

Broduct data sheet

Schematic diagram

TO-252

Features

● V_{DS} = 30V,ID =90A

 $R_{DS(ON)}$,3.5m Ω (Typ) @ VGS =10V

RDS(ON), $7m \Omega (Typ) @ VGS =4.5V$

- Low on resistance
- Low gate charge
- Fast switching
- Low reverse transfer capacitances

Application

- DC-DC converters
- Synchronous Rectifier

Absolute Maximum Ratings(TA=25℃ unless otherwise noted)

7.500 atto maximum ratings (17. 20 % amount of motor)						
Parameter	Symbol	Value	Unit			
Drain-Source Voltage	V _{DS}	30	V			
Gate-Source Voltage		V _{GS}	±20	V		
Drain Current-Continuous ^{Note3}	TC=25℃		90	Α		
Drain Current-Continuous*****	TC=100℃	- I _D	63	Α		
Drain Current-Pulsed ^{Note1}	I _{DM}	200	Α			
Avalanche Energy ^{Note4}		E _{AS}	280	mJ		
Avalanche Current		I _{AS}	33	Α		
Maximum Power Dissipation	laximum Power Dissipation TC=25°C		105	W		
Storage Temperature Range		T _{STG}	-55 to +150	°C		
Operating Junction Temperature Rar	TJ	-55 to +150	$^{\circ}$ C			

Thermal Resistance

Parameter	Symbol	Min.	Тур.	Max	Unit
Thermal Resistance,Junction-to-Case	Rejc	-	3.3	-	°C/W

Electrical Characteristics(TJ=25℃ unless otherwise noted)

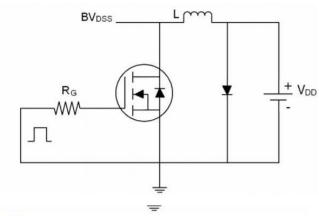
OFF CHARACTERISTICS						
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V,I _{DS} =250uA	30	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =30V,V _{GS} =0V	-	-	1	uA
Gate-Body Leakage	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA

ON CHARACTERISTICS							
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Gate Threshold Voltage	VGS(TH)	V _{DS} =V _{GS} ,I _{DS} =250uA	1.0	1.7	2.5	٧	
Drain-Source On-State Resistance	RDS(ON)	V _{GS} =10V,I _{DS} =30A	-	3.5	5.5	m Ω	
		V _{GS} =4.5V,I _{DS} =20A	-	7	8.9	11112	

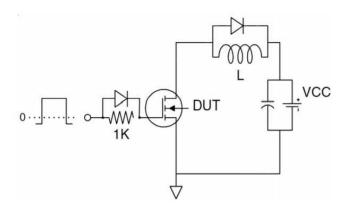
DYNAMIC CHARACTERISTICS							
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Input Capacitance	Ciss	\/D0_45\/_\/00_0\/	-	1963	-		
Output Capacitance	Coss	VDS =15V, VGS = 0V,	-	248	-	pF	
Reverse Transfer Capacitance	C _{rss}	f=1MHz	-	221	-		
Gate Resisitance	Rg	VDD=0V,VGS=1V, F=1MHz	-	1.43	-	Ω	

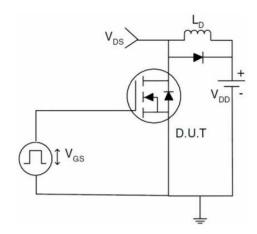
SWITCHING CHARACTERISTICS								
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit		
Turn-On Delay Time	T _{d(on)}	\/ -40\/\/ -45\/	-	55	-			
Rise Time	t _r	$V_{GS}=10V, V_{DS}=15V,$ $R_{GEN}=3\Omega I_{D}=20A$	-	36.4	-			
Turn-Off Delay Time	T _{d(off)}	NGEN-311 ID-20A	-	37.5	-	ns		
Fall Time	t _f		-	14	-			
Total Gate Charge at 10V	Qg	\/ -45\/ -45 A	-	41	-			
Gate to Source Gate Charge	Q _{gs}	V _{DS} =15V,I _{DS} =45A, V _{GS} =10V	-	6.4	-	nC		
Gate to Drain"Miller"Charge	Q _{gd}	V GS-10V	-	11	-			

DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS								
Parameter Symbol Conditions Min. Typ. Max. Uni								
Drain-Source Diode Forward Voltage	V _{SD}	V _{GS} =0V,I _{DS} =20A	-	-	1.2	V		
Reverse Recovery Time	t _{rr}	TJ=25℃,IF=20A	-	21.7	-	nS		
Reverse Recovery Charge	Qrr	di/dt=100A/us	-	7.2	-	nC		


Notes:

- 1: Repetitive rating, pulse width limited by maximum junction temperature.
- 2: Surface mounted on FR4 Board, t≤10sec.
- 3: Pulse width \leq 300 μ s, duty cycle \leq 2%.
- 4: EAS condition: L=0.5mH,VDD=15V,VG=10V,V $_{\rm GATE}$ =30V,Start T $_{\rm J}$ =25 $^{\circ}{\rm C}$.




1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

MS100N03

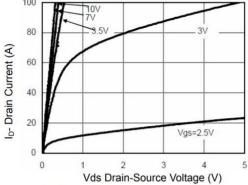


Figure 1 Output Characteristics

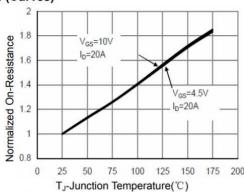
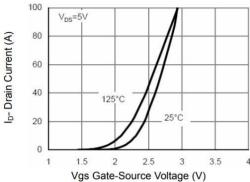



Figure 4 Rdson-Junction Temperature

Figure 2 Transfer Characteristics

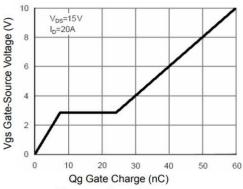


Figure 5 Gate Charge

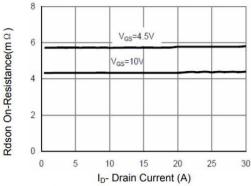
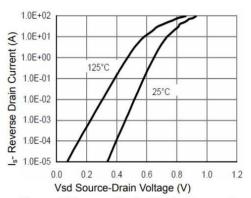
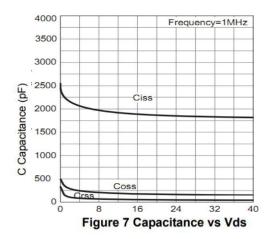
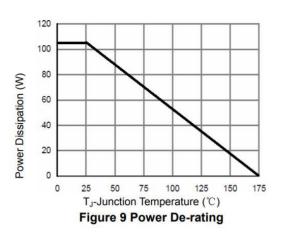
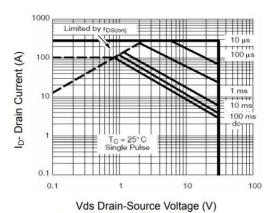


Figure 3 Rdson- Drain Current


Figure 6 Source- Drain Diode Forward


MS100N03

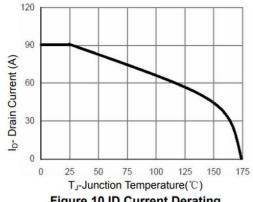
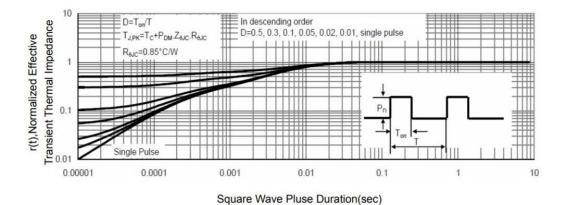
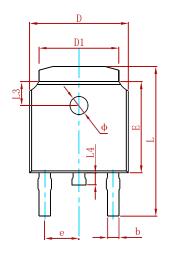
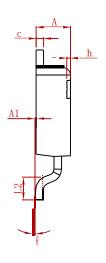
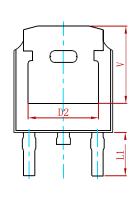


Figure 8 Safe Operation Area

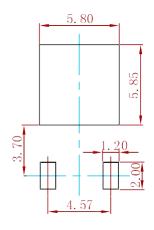
Figure 10 ID Current Derating


Figure 11 Normalized Maximum Transient Thermal Impedance



PACKAGE MECHANICAL DATA



0	Dimensions	In Millimeters	Dimension	s In Inches
Symbol	Min.	Max.	Min.	Max.
Α	2.200	2.400	0.087	0.094
A1	0.000	0.127	0.000	0.005
b	0.635	0.770	0.025	0.030
С	0.460	0.580	0.018	0.023
D	6.500	6.700	0.256	0.264
D1	5.100	5.460	0.201	0.215
D2	4.830	REF.	0.190	REF.
E	6.000	6.200	0.236	0.244
е	2.186	2.386	0.086	0.094
L	9.712	10.312	0.382	0.406
L1	2.900	REF.	0.114	REF.
L2	1.400	1.700	0.055	0.067
L3	1.600	REF.	0.063	REF.
L4	0.600	1.000	0.024	0.039
Ф	1.100	1.300	0.043	0.051
θ	0°	8°	0°	8°
h	0.000	0.300	0.000	0.012
V	5.250	REF.	0.207	REF.

Suggested Pad Layout

Note:

- 1.Controlling dimension:in millimeters.
- 2.General tolerance:± 0.05mm.
- 3. The pad layout is for reference purposes only.

REEL SPECIFICATION

P/N	PKG	QTY
MS100N03	TO-252	2500

Semiconductor

Attention

- Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications.
- MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specificationsof any andall MSKSEMI Semiconductor products described orcontained herein.
- Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not quarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer'sproducts oreguipment.
- MSKSEMI Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with someprobability. It is possiblethat these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits anderror prevention circuitsfor safedesign, redundant design, and structural design.
- In the event that any or all MSKSEMI Semiconductor products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from theauthorities accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringementsof intellectual property rights or other rightsof third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. Whendesigning equipment, referto the "Delivery Specification" for the MSKSEMI Semiconductor productthat you intend to use.