
MSKSEMI

ESD

TVS

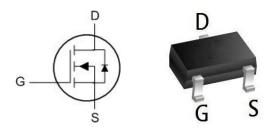

TSS

MOV

GDT

PLED

Broduct data sheet



SOT23 Pin Configuration

Product Summary

BVDSS	RDSON	ID
100V	105 mΩ	3A

- ★ Green Device Available
- ★ Super Low Gate Charge
- ★ Excellent Cdv/dt effect decline
- ★ Advanced high cell density Trench technology

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V _{DS}	Drain-Source Voltage 100		V
V_{GS}	Gate-Source Voltage	±20	V
I _D @T _A =25°C	Continuous Drain Current, V _{GS} @ 10V ¹	3	А
I _D @T _A =70°C	Continuous Drain Current, V _{GS} @ 10V ¹	2.2	А
I _{DM}	Pulsed Drain Current ²	11	А
P _D @T _A =25°C	Total Power Dissipation ³	1	W
T _{STG}	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
R _{θJA}	Thermal Resistance Junction-ambient ¹		125	°C/W
R _θ JC	Thermal Resistance Junction-Case ¹		80	°C/W

AP10TN135N HF Semiconductor Compiance

Electrical Characteristics Tc=25°C unless otherwise specified

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units	
Off Chara	Off Characteristic						
V _{(BR)DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0V, I _D = 250µA	100	110	-	V	
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 100V, V _{GS} = 0V	-	-	1	μA	
Igss	Gate to Body Leakage Current	V _{DS} = 0V, V _{GS} = ±20V	-	-	±100	nA	
On Chara	cteristics note3					•	
V _{GS(th)}	Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = 250μA	1.0	1.95	3.0	V	
R _{DS(on)}	Static Drain-Source On-Resistance note2	V _{GS} = 10V, I _D = 3A	-	105	140	mΩ	
Dynamic (Characteristics note4						
C _{iss}	Input Capacitance		-	196	-	pF	
Coss	Output Capacitance	$V_{DS} = 50V, V_{GS} = 0V,$	•	25.9	-	pF	
Crss	Reverse Transfer Capacitance	f = 1.0MHz	-	21.4	-	pF	
Qg	Total Gate Charge	V _{DS} = 50V, I _D = 3A,	-	4.3	-	nC	
Qgs	Gate-Source Charge		-	3.5	-	nC	
Q _{gd}	Gate-Drain("Miller") Charge	V _{GS} = 10V	-	3.1	-	nC	
Switching	Characteristics note4					•	
t _{d(on)}	Turn-On Delay Time		-	14.7	-	ns	
tr	Turn-On Rise Time	$V_{DD} = 50V$, $I_{DS} = 3A$	-	3.5	-	ns	
$t_{d(off)}$	Turn-Off Delay Time	$R_G = 2\Omega$, $V_{GEN} = 10V$	-	20.9	-	ns	
t _f	Turn-Off Fall Time		-	2.7	-	ns	
Drain-Sou	rce Diode Characteristics and Maximum Rati	ngs			'		
Is	Maximum Continuous Drain to Source Diode Forward Current note2		-	-	4.5	Α	
Ism	Maximum Pulsed Drain to Source Diode Forward Current		-	-	12	Α	
V _{SD}	Drain to Source Diode Forward Voltage note3	V _{GS} = 0V, I _S =3A	-	-	1.3	V	
t _{rr}	Body Diode Reverse Recovery Time	\/ - 0\/ I - 2A	-	32.1	-	ns	
Qrr	Body Diode Reverse Recovery Time Charge	$V_{GS} = 0V, I_F = 3A,$	-	39.4	-	nC	
I _{rrm}	Peak Reverse Recovery Current	- di/dt =100A/μs	-	2.1	-	Α	

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤2%.
- 4. Guaranteed by design, not subject to production
- 5. $V_{DD}{=}50~V, R_{G}{=}50~\Omega,$ L=0.3 mH, starting $T_{j}{=}25~^{\circ}C$

AP10TN135N HF

Typical Characteristics

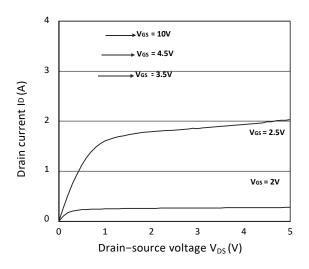


Figure 1. Output Characteristics

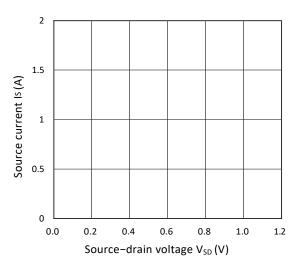


Figure 3. Forward Characteristics of Reverse

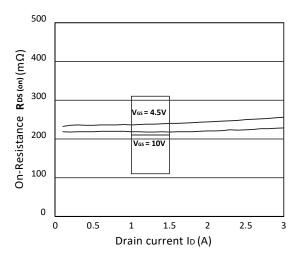


Figure 5. R_{DS(ON)} vs. I_D

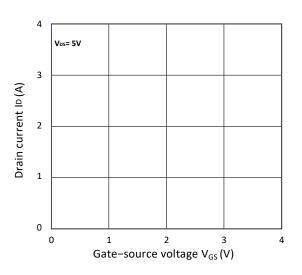


Figure 2. Transfer Characteristics

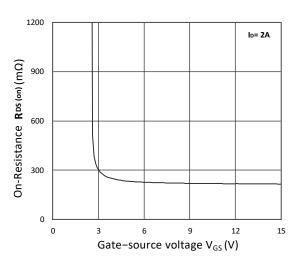


Figure 4. $R_{DS(ON)} \, vs. \, V_{GS}$

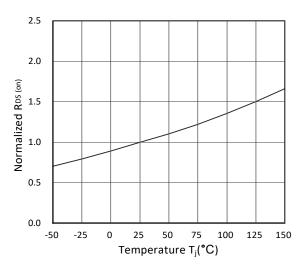
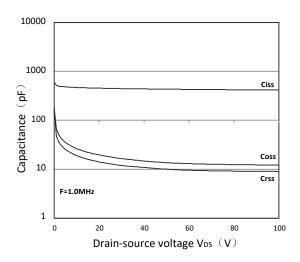
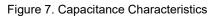




Figure 6. Normalized R_{DS(on)} vs. Temperature

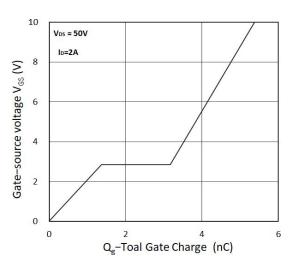
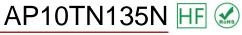
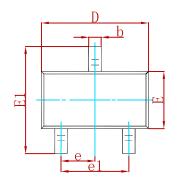
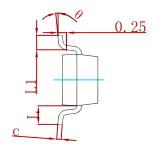
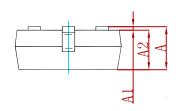



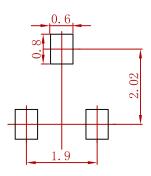
Figure 8. Gate Charge Characteristics







PACKAGE MECHANICAL DATA



Symbol	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	0.900	1.150	0.035	0.045	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.050	0.035	0.041	
b	0.300	0.500	0.012	0.020	
С	0.080	0.150	0.003	0.006	
D	2.800	3.000	0.110	0.118	
Е	1.200	1.400	0.047	0.055	
E1	2.250	2.550	0.089	0.100	
е	0.950 TYP		0.037	7 TYP	
e1	1.800	2.000	0.071	0.079	
L	0.550 REF		0.022	REF	
L1	0.300	0.500	0.012	0.020	
θ	0°	8°	0°	8°	

Suggested Pad Layout

- 1.Controlling dimension:in millimeters.2.General tolerance:± 0.05mm.3.The pad layout is for reference purposes only.

REEL SPECIFICATION

P/N	PKG	QTY
5N10	SOT-23	3000

Attention

- Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications.
- MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specificationsof any andall MSKSEMI Semiconductor products described orcontained herein.
- Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- MSKSEMI Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with someprobability. It is possiblethat these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits anderror prevention circuitsfor safedesign, redundant design, and structural design.
- In the event that any or all MSKSEMI Semiconductor products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from theauthorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringementsof intellectual property rights or other rightsof third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. Whendesigning equipment, referto the "Delivery Specification" for the MSKSEMI Semiconductor product that you intend to use.