M5K5EMI
 SEMICONDUCTOR

PIN3 S
N-Channel MOSFET

Description

The AOD478-MS is the highest performance trench N -ch MOSFETs with extreme high cell density, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications.
The AOD478-MS meet the RoHS and Green Product requirement, 100\% EAS guaranteed with full function reliability approved.
Product Summary

BVDSS	RDSON	ID
100 V	$70 \mathrm{~m} \Omega$	20 A

TO-252

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
$V_{\text {DS }}$	Drain-Source Voltage	100	V
V_{GS}	Gate-Source Voltage	± 20	V
$\mathrm{l}_{\mathrm{D}} \mathrm{T} \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	Continuous Drain Current, VGs @ 10V ${ }^{1}$	20	A
$1 \mathrm{O} \mathrm{T}_{\mathrm{c}=100^{\circ} \mathrm{C}}$	Continuous Drain Current, VGs @ 10V ${ }^{1}$	10	A
l @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Continuous Drain Current, VGs @ 10V ${ }^{1}$	5	A
l @ $\mathrm{T}_{\text {A }}=70^{\circ} \mathrm{C}$	Continuous Drain Current, VGs @ 10V ${ }^{1}$	3.4	A
IdM	Pulsed Drain Current ${ }^{2}$	30	A
EAS	Single Pulse Avalanche Energy ${ }^{3}$	6.1	mJ
IAS	Avalanche Current	15	A
P_{D} @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	Total Power Dissipation ${ }^{3}$	34.7	W
$\mathrm{P}_{\mathrm{D}} @ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Total Power Dissipation ${ }^{3}$	2	W
Tsta	Storage Temperature Range	-55 to 150	${ }^{\circ} \mathrm{C}$
TJ	Operating Junction Temperature Range	-55 to 150	C

Thermal Data

Symbol	Parameter	Typ.	Max.	Unit
ReJA	Thermal Resistance Junction-ambient ${ }^{1}$	---	62	${ }^{\circ} \mathrm{C} / \mathrm{W}$
ReJc	Thermal Resistance Junction-Case ${ }^{1}$	---	3.6	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics ($\mathrm{T}_{\mathrm{J}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
BV ${ }_{\text {dss }}$	Drain-Source Breakdown Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$, $\mathrm{I}_{\mathrm{D}}=250 \mathrm{uA}$	100	---	---	V
$\triangle B V_{\text {dss }} / \triangle T_{J}$	BVDSS Temperature Coefficient	Reference to $25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$	---	0.098	---	V/ ${ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	Static Drain-Source On-Resistance ${ }^{2}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{ID}=10 \mathrm{~A}$	---	70	87	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{ld}=8 \mathrm{~A}$	---	85	90	$\mathrm{m} \Omega$
VGS(th)	Gate Threshold Voltage	V GS $=\mathrm{V}_{\text {DS }}, \mathrm{ld}=250 \mathrm{uA}$	1.0	---	2.5	V
$\triangle \mathrm{VGS}_{\text {(th }}$	VGS(th) Temperature Coefficient		---	-4.57	---	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Idss	Drain-Source Leakage Current	$\mathrm{V}_{\mathrm{DS}}=80 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	---	---	1	uA
		$\mathrm{V}_{\mathrm{DS}}=80 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=55^{\circ} \mathrm{C}$	---	---	5	
IGSS	Gate-Source Leakage Current	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	---	---	± 100	nA
gfs	Forward Transconductance	$V_{\text {DS }}=5 \mathrm{~V}$, ID $=10 \mathrm{~A}$	---	13	---	S
Rg_{g}	Gate Resistance	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	---	2	---	Ω
Q_{g}	Total Gate Charge (10V)	$\mathrm{V}_{\mathrm{DS}}=80 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A}$	---	26.2	---	nC
$\mathrm{Qgs}_{\text {g }}$	Gate-Source Charge		---	4.6	---	
Q_{gd}	Gate-Drain Charge		---	5.1	---	
$\mathrm{T}_{\mathrm{d} \text { (on) }}$	Turn-On Delay Time	$\begin{aligned} & V_{D D}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=3.3 \Omega \\ & \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A} \end{aligned}$	---	4.2	---	ns
T_{r}	Rise Time		---	8.2	---	
Td (off)	Turn-Off Delay Time		---	35.6	---	
T_{f}	Fall Time		---	9.6	---	
Ciss	Input Capacitance	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	---	1535	---	pF
Coss	Output Capacitance		---	60	---	
Crss	Reverse Transfer Capacitance		---	37	---	

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
Is	Continuous Source Current ${ }^{1,5}$	$\mathrm{V}_{\mathrm{G}}=\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}$, Force Current	---	--	20	A
ISM	Pulsed Source Current ${ }^{2,5}$		--	--	30	A
$\mathrm{V}_{\text {SD }}$	Diode Forward Voltage ${ }^{2}$		---	---	1.2	V
trr	Reverse Recovery Time	$\mathrm{IF}=10 \mathrm{~A}, \mathrm{dl} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}, \mathrm{T}=25^{\circ} \mathrm{C}$	---	37	---	nS
Qrr	Reverse Recovery Charge		---	27.3	---	nC

[^0]
Typical Characteristics

Fig. 1 Typical Output Characteristics

Fig. 3 Forward Characteristics Of Reverse

Fig. 5 Normalized $\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$ vs. T_{J}

Fig. 2 On-Resistance vs. Gate-Source

Fig. 4 Gate-Charge Characteristics

Fig. 6 Normalized R $_{\text {Dson }}$ Vs. T_{J}

Fig. 7 Capacitance

Fig. 8 Safe Operating Area

Fig. 9 Normalized Maximum Transient Thermal Impedance

Fig. 10 Switching Time Waveform

Fig. 11 Unclamped Inductive Switching Waveform

PACKAGE MECHANICAL DATA

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min.	Max.	Min.	Max.
A	2.200	2.400	0.087	0.094
A1	0.000	0.127	0.000	0.005
b	0.635	0.770	0.025	0.030
C	0.460	0.580	0.018	0.023
D	6.500	6.700	0.256	0.264
D1	5.100	5.460	0.201	0.215
D2	4.830 REF.		0.190 REF.	
E	6.000	6.200	0.236	0.244
e	2.186	2.386	0.086	0.094
L	9.712	10.312	0.382	0.406
L1	2.900 REF.		0.114 REF.	
L2	1.400	1.700	0.055	0.067
L3	1.600 REF.		0.063 REF.	
L4	0.600	1.000	0.024	0.039
θ	0°	8°	0°	8°
h	0.000	0.300	0.000	0.012
V	5.250 REF.		0.207 REF.	

Suggested Pad Layout

Note:

1.Controlling dimension:in millimeters.
2.General tolerance: $\pm 0.05 \mathrm{~mm}$.
3.The pad layout is for reference purposes only.

REEL SPECIFICATION

P/N	PKG	QTY
AOD478-MS	TO-252	2500

Attention

- Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications.
- MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specificationsof any andall MSKSEMI Semiconductor products described orcontained herein.
\square Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer'sproducts orequipment.
- MSKSEMI Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with someprobability. It is possiblethat these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits anderror prevention circuitsfor safedesign, redundant design, and structural design.
\square In the event that any or all MSKSEMI Semiconductor products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from theauthorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.
- Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringementsof intellectual property rights or other rightsof third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. Whendesigning equipment, referto the "Delivery Specification" for the MSKSEMI Semiconductor productthat you intend to use.

[^0]: Note :
 1.The data tested by surface mounted on a 1 inch 2 FR-4 board with $2 O Z$ copper.
 2. The data tested by pulsed, pulse width $\leqq 300$ us, duty cycle $\leqq 2 \%$
 3. The EAS data shows Max. rating . The test condition is $\mathrm{V}_{\mathrm{DD}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~L}=0.1 \mathrm{mH}, \mathrm{I}_{\mathrm{AS}}=11 \mathrm{~A}$
 4. The power dissipation is limited by $150^{\circ} \mathrm{C}$ junction temperature
 5. The data is theoretically the same as I_{D} and $I_{D M}$, in real applications, should be limited by total power dissipation.

